3.2 PSTN中的通信过程
PSTN电话通过No.7信令来建立连接过程,通常采用G.711的PCM编码格式传输,传输速率64 kbit/s。PSTN网络通话流程如图2所示。在PSTN通信过程中,A交换机首先通过发出IAM发起呼叫,其中包括被叫号码。B交换机确定被叫空闲后发出ACM地址全信号通知A,此时B交换机通过A交换机对主叫用户发送回铃音,B交换机向被叫用户振铃。被叫摘机后,B交换机发ANC计费应答信号通知A,振铃和回铃停止,双方用户开始通话。通话结束后主叫用户先挂机,A交换机发出CLF前向释放信号通知B,B收到后拆线并发出RLG释放监护信号通知A交换机。

3.3 媒体网关的组成和实现
下一代媒体网关系统主要由媒体网关、媒体网关控制器和信令网关组成,实现了功能上的分解。为了适应不同的网络,本文主要介绍了媒体网关的实现方法,其中媒体网关的主要作用是实现模拟信号由电路交换转换成数字信号PCM编码,并进行G.711或者G.723等格式编码。为了实现媒体网关,整个系统由3部分组成,包括基于ARM架构的嵌入式系统(uClinux)、语音信号转换芯片(TLC320AD50)和定点数字信号处理器(TMS320VC54xx),如图3所示。

图3 下一代网络媒体网关的组成
其中,AD50芯片的TDM接口负责从电路交换的信号中提取模拟信号的语音,通过AD50把模拟信号转换成数字信号,然后由DSP对提取的数字信号PCM编码后的语音信号进行μ律或者A律压缩,最后可以通过主处理器来进行G.723和G.729等编码格式的转换。对IP网的语音信号传输,uClinux操作系统同时必须支持RTP协议栈,这可以通过移植开源的基于C语言的ORTP库来实现,而H.248协议栈则是自己来完成的,各种码流格式的转换通过移植ffmpeg程序来实现。为了验证系统的可行性,采取了通过麦克风输入电路的方法进行了实现,DSP通过CSS调试,uClinux通过终端调试,由麦克风采集的模拟信号经过AD50转换为PCM编码再通过DSP转变成μ律或者A律编码。最后由uClinux主处理器来对μ律编码进行格式转换添加RTP头,由H.248进行与媒体网关控制器的交换,交换完成后发包给PC机,最后由PC机用ethereal抓包。对比发包方和收包方的可证实丢包率情况,验证了方法的可行性。
为了真正做到网络融合,支持不同网络(例如2G网络、3G网络和PSTN等)的系统接口和编码情况,媒体网关添加了不同的网络接口。ARM主处理器支持ATM和IP等不同的接口,同时因为2G网络支持AMR-WB、ARM-NB等不同的语音信号,在主处理器中也必须添加相应的编码模块,来对码流格式进行转换。
媒体网关系统在不同网络中的位置情况如图4所示。作为多个网络的连接点,媒体网关起到了至关重要的转换和连接作用。

图4 媒体网关系统连接的各种网络
3.4 下一代信令网关和媒体网关控制器的主要功能
信令网关的作用是完成两个不同网络之间用于控制的信息的相互转换,以实现一个网络中的控制信息能够在另一个网络中延续传输。信令网关是在两个网络的边界接收和发送信令的代理,是两个网络间的信令关口,对信令消息进行翻译、中继或做终结处理。信令网关可以独立设置,也可以与其他网关综合设置,来处理与接入线路或中继线路有关的信令,媒体网关控制器作为实现呼叫控制的核心,它根据接收到的信令控制媒体网关连接的建立和释放等。其主要功能是为基本呼叫的建立、维持和释放提供控制功能,包括呼叫处理、连接控制、智能呼叫触发检测和资源控制等。此外,MGC还应当具有业务提供功能、协议功能、互通功能、资源管理功能、计费功能以及No.7信令功能等。
4、结束语
下一代媒体网关系统主要由媒体网关、信令网关、媒体网关控制器组成。本文重点介绍了下一代网络的媒体网关的各功能构成、组成模块、软件接口、硬件实现以及如何设计下一代媒体网关系统。分析了媒体网关系统用到的几个协议以及这些协议之间的异同,并对这些协议的发展趋势进行了展望。详细地描述了媒体网关系统的各个组成部分及功能。下一代媒体网关系统对于下一代网络和PSTN的融合有着重要的意义,可以实现PSTN与互联网的互通,实现视频通话等下一代网络业务,对网络融合有着深远的影响。 [1] [2] |